
Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 1

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 3

The typical scripted test case is difficult to understand and even more
difficult to maintain. Take this one, for example. Even if you could read it,
you would be hard pressed to understand what it was doing without
time-consuming scrutiny. I have written many test cases just like this.
You probably have as well – and if not, I bet you have had to maintain
some!

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 4

This is exactly the same test case, but with a series of techniques
applied that together let the essence of the test case come through. Not
only does this version do everything the much longer version did, but
this test case can take the place of many other test cases as well.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 5

The plethora of complicated test cases just like this one that are typically
necessary causes the development of test case automation to lag behind
product development to such a degree that by the time we testers can
start finding bugs our developers are likely to have moved onto other
tasks and be reluctant to switch back to a “completed” task. Similarly, if
we uncover fundamental flaws in the feature definition or
implementation it may be too late in the product cycle to remedy them.
In the race of us against everyone else we cannot even tie, let alone win!

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 6

Imagine if, rather than one tester poking our head up from among the
throng, we could be out ahead of everyone else, scouting the way at all
prudent speed.

Writing fewer, simpler tests that rarely need to be maintained would let
us not only keep up with the pack but get ahead. We would have time to
look for those deep, gnarly bugs that are the most difficult to find. We
could be testers rather than automators!

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 7

Move from large numbers of test cases that all look alike and are hard to
understand to fewer more general test cases that cover more surface
area of your product with less effort! The myriad problems you must
overcome can be grouped into three areas, each with its own solution.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 8

Test cases are full of duplication and complexity that is begging to be
factored out, but doing so in a structured way is difficult. Make it simple
by focusing on your customer.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 9

The number of execution paths and data values that must be tested is
immense and overwhelms your test cases. Free your test cases from this
jail by moving variation from your test cases to your test libraries.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 10

Execution and verification seem to be inextricably tied to each other and
so your test cases are tied into knots while attempting to verify the small
number of datapoints you manage to verify. Cut through this tangle by
decoupling verification from execution.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 12

Scripted test cases tend to be just like this crowd: each one is similar to
each other one in many respects. The family of test cases for a particular
feature look even more like each other, and sibling test cases may be
virtually identical. Unfortunately, these similarities mean duplicated code.

When duplicated code is a concern, a common solution is to factor said
code out to a helper method. This eases the burden of maintaining this
shared code, but as the number of helpers grows the code base starts to
have another thing in common with this crowd: it becomes difficult to
find the particular method you are looking for.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 13

Data presents a similar problem. Most test cases need a pipe into
internal application data structures, but the right pipe to use is not
always clear. As the data structures change over time these pipes
become convoluted and even harder to follow. Developers cannot always
tell whether a particular pipe is being used, so when pipes are ripped out
or replaced test cases can find themselves with connections that stop
working with no warning or recourse. Testers must be plumbers as well,
tracing undocumented pathways back to what appears to be the well of
data they require, knowing full well that it may dry up tomorrow.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 14

The point of many scripted test cases is to manipulate an application’s
user interface. The details of how this is done are often complicated and
complex, involving even more chains, springs, pullies, and levers than
this machine uses. The user interface is generally the most changeable
part of an application, with springs changing to levers and pullies
becoming chains – not to mention entire sections being removed or
replaced - on a daily basis. Keeping test cases current with all this can
easily form an overwhelming burden.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 15

Mitigate these problems by applying an organizing influence that will stay
valid and not degrade over time: your product’s customer. You know that
the right way to approach building an application is to think about what
the people who purchase your application want to do and how they want
to do it. Using this as a basis for your development activities helps
ensure you create an application your customer actually wants.
Extending this principle into your test libraries focuses and provides
structure for your Test libraries and test cases.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 17

The starting point is the Logical Functional Model, or LFM. The LFM is
very different from the object model point of view you are likely used to,
and it is much more than your standard library of helper methods. The
Logical Functional Model works from the user’s point of view: what can
your user do in your application? What features do they see? The LFM is
all about the semantics of your answers to these questions, not the
specifics.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 19

The LFM’s user-centric view of an application is very different from the
object model view most people are used to. Object models are created
so the application can be automated, and so they look at their
application the way a programmer would: menus and toolbars and
palettes and views. Users, however, typically see the application in a
different light: actions they can take. Keeping this user-centric view is
harder than you might expect, for the scripting object model mindset is
hard to break. Keeping it is however worth the trouble, for when your
testing code is organized around user actions, writing a test case is
nothing more than listing the actions a user would take. The test case
becomes easy to read and easy to understand.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 20

At its core, the LFM is nothing more than a library of common code that
has been factored out to helper methods. A common problem with such
libraries is finding an organization scheme that holds up over time. The
LFM avoids this impending chaos by structuring its contents the same
way as your customer groups the features in your application. Just as
the users of a graphics application wouldn’t see menus and toolbars and
views but rather projects and drawings and shapes, the LFM is not
organized around menus and toolbars and views but rather around
projects and drawings and shapes. The steady influence of your
customers’ view of your features makes the LFM easy to understand and
navigate, even over the course of years.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 21

“Do what your name says you will do or throw an exception” is a rule of
thumb object model methods usually live by. The LFM takes a slightly
different tack: “Go through the motions necessary to do what your name
says you will do”. This difference is the key that enables LFM methods to
be used for both positive and negative testing. The LFM knows the
actions required to delete the selected elements, but only the test cases
can know what the result should be. Thus the responsibility for ensuring
the application is in the necessary state must fall upon each test case,
not the various LFM methods.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 22

Here is what happens when we apply a Logical Functional Model to our
sample test case. The top example magnifies the first eight lines of code
in the test case so that you can actually read them. Even now, however,
decoding what exactly they do is difficult. Contrast this with the
corresponding LFM call in the bottom – much smaller – rectangle. You
can see that using an LFM will dramatically simplify your test cases, and
you will be able to more easily discern the point of each. The essence of
the test case starts to come through.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 24

I said earlier that the LFM is very different from a scripting object model.
One difference is that as it is focused on user actions it only contains
setters. The getters move to a separate Application Internals model. This
model follows the LFM’s lead and organizes its data retrieval helpers
around the same customer features as does the LFM. This feature
driven-organization simplifies data access and sharply defines change
boundaries. The Application Internals model talks to the semantics of the
data you need, not the specifics.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 26

The Logical Functional Model moves execution helpers out of your test
cases in an orderly and easily understood fashion. The Application
Internals Model does the same for your data retrieval needs. Application
Internals maintains the same focus on user features as does the LFM, so
once a tester understands the LFM’s organization they can navigate the
Internals model just as easily. As with the LFM, this approach provides
an organizing influence that helps it maintain its integrity in the face of
application changes and ongoing maintenance. This technique can be
applied to data coming from other sources, such as the operating
system, as well.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 27

The Internals models put an easier-to-understand façade on the data
they front. Most application's internal data structures are designed to
make implementing the application easy, not to make it simple for
anyone else to get at particular bits of information. Having data
organized in a clear and consistent manner in the same buckets as the
rest of the automation system makes working with that data easier and
less error-prone. This organization also simplifies retrieving data from
areas outside one's particular areas of knowledge. While testers may
come to know the ins and outs of inspecting application state for their
feature, they are unlikely to have the same knowledge about other
areas. Once the Internals models are understood, however, anyone can
find the information they require.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 28

Limiting direct access to application and other data structures to the
Internals models keeps most changes in those structures from affecting
test cases and LFM methods. The value of isolating large changes to a
few well-defined areas should be obvious. The Internals models provide
value for smaller changes as well, as they allow you to make a few well-
targeted changes rather than updating your entire code base. Even at
the extremes, where Internals methods are nothing more than a single
line of code, the organizing influence of focusing on customer features
keeps the library clear and concise.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 29

Here again the top example magnifies just the start of the many lines of
code required to find the number of elements on the active scene. All of
that detailed knowledge of how to poke through the application’s internal
data structures is replaced with a single line of code that clearly states
what data is being retrieved. When those details change, just one easily
identified getter needs to be updated rather than a myriad of test cases.
Any tester on your team could easily find this and any other data they
might require. The essence of the test case starts to come through.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 31

The most visible aspect of your application is its user interface. Your UI is
the start and end of your application to many of your customers. Test
cases tend to start here as well. Focusing on the “how” of the test case –
the specific order in which the various widgets are interacted with –
rather than the “what” – the point of all that interaction – makes it
difficult to pull the test case “forest” out of the UI manipulation “trees”.
Building a Physical Object Model that references your UI in terms of the
semantics of what you are trying to accomplish rather than the specifics
of how it is done makes your test case more clear.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 33

There are two parts to the Physical Object Model. The outer layer is a
straightforward object model for your application's user interface. This
layer hides the details of finding and manipulating the various widgets
and controls in your UI behind clearly and intuitively named methods
and properties. Test cases and LFM implementation become simpler to
write and easier to understand when they can dot their way around the
application UI and ignore details such as the monitor's resolution and
how UI controls are identified.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 34

The inner layer of the Physical Object Model is a set of controls
abstractions. These abstractions hide the specifics of what type a control
is behind a façade that merely exposes the behaviors of which it is
capable. Test cases and LFM methods thus do not need to know whether
a particular control is a button or a check box but rather only that it can
be invoked or have its value set. Thus user interface changes do not
affect test cases and LFM methods as long as the UI's semantics stay
constant.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 35

Generalizing control actions enables the control abstraction layer to
completely camouflage all details regarding whether an action is
executed via the mouse, the keyboard, or accessibility APIs. Every
control has a corresponding Control Provider that knows how to execute
its control’s actions using its particular input method. With LFM methods
and test cases ignorant of how each control is manipulated, a test case
can exercise any or all of the execution methods by simply swapping in
different Control Providers.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 36

As before, the top example highlights the several lines of code necessary
to invoke the File, New, and Project menu items, while the bottom
rectangle shows the single line of code required to do the same via a
Physical Object Model. As with the LFM and Application Internals, all of
the details regarding how that UI is found and invoked are removed from
the test case. Wrapping a Physical Object Model around your user
interface manipulation code makes working with UI intuitive and
discoverable. Smudging the details of exactly how that manipulation is
accomplished simplifies your test cases. The essence of the test case
starts to come through.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 39

Here is the test case as it stands at this point. The combination of a
Logical Functional Model, an Application Internals model, and a Physical
Object Model move much of the complexity and maintenance from every
test case to individual library methods where they belong. The test case
is no longer bogged down in details of finding and manipulating UI and
pulling data out of the application’s internal data structures. The essence
of the test case is becoming clear.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 41

This monitor accepts input from a variety of sources, but the picture it
displays in each case is the same. Similarly, most user actions in an
application can be input via different methods, but the end result of each
is identical. The infrastructure required for each of these execution
variants is typically identical. The entire test case for each variant, in
fact, is often completely identical but for how the action is executed. But
every path has to be tested, so a test case is necessary for each one.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 42

Every possible execution path must be taken. A representative sample of
each data equivalency class must be used. The cross-product of these
two axes needs to be tested within every possible context as well. This
matrix this produces is usually large – impossibly so. It could be reduced
by bringing setup and teardown into the mix, but the resultant
management hassles would likely bring more pain than gain. When each
test case must decide the direction it is going to take, the easiest path
tends to be chosen. Rather than every path being taken one path is
taken over and over and over.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 43

An incredible amount of data ends up being locked up in every test case:
Which execution path is taken. What data values are used. What parts of
the user interface are touched. How that touching is performed. There is
no good way to search on this information, so if you need to know which
paths or data values have not been covered, or the UI details change,
you have no recourse but to open each test case one by one and poke
through it hoping to run into the answers for which you are looking.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 44

The solution to each of these problems is to have your test libraries
provide and direct variation of execution paths and data values.
Execution Behavior Manager and Data Manager do just this. They allow
you to replace all those look-alike test cases with many fewer tests that
focus on what they are testing rather than how they are doing so. Test
cases can ignore execution variations and data values they do not care
about while still choosing specific paths and values when they do.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 46

Execution Behavior Manager and Data Manager earn their keep by
making choices for test cases and LFM methods. This work of course is
predicated upon having sets of somethings from which to choose. As you
might guess from its name, Execution Behavior Manager works with
Composite Execution Behaviors to choose from amongst their child
Execution Behaviors. Similarly, Data Manager serves as a clearinghouse
from which callers can obtain data-generating Data Providers.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 48

Every Logical Functional Model method is implicitly a child Execution
Behavior. As such it requires no special implementation or
instrumentation. It can pretty well do whatever it pleases. What it does
is not important as far as this part of the system goes. Important here
are two things: first, that the child Execution Behavior can be called
directly by any test case or LFM method. Second, what doing so means:
explicitly calling a child Execution Behavior means that the caller
decidedly cares how that action is carried out. In cases like regression
tests, you very much want to ensure that a specific execution path is
followed. Child Execution Behaviors allow you to do just that.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 49

Although every LFM method is implicitly a child Execution Behavior,
certain LFM methods are also Composite Execution Behaviors. A
Composite Execution Behavior is an LFM method that knows that it is
implemented via one or more semantically equivalent child Execution
Behaviors. Rather than actually carrying out an action, Composite
Execution Behaviors ask the Execution Behavior Manager to choose one
of their child Execution Behaviors, and then they execute the selected
child. This is how you get variation over execution paths: each time a
Composite Execution Behavior is called, a different child may be chosen.
Test cases and LFM methods that call Composite Execution Behaviors
make clear that they need something done but do not care how it
happens.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 50

Each example here highlights a single line of code in our sample test
case. You don’t see the dramatic reduction in lines of code that you have
seen previously because this test started out being written in terms of
Composite Execution Behaviors. Although the code does not become
simpler, understanding the test case does. It is now clear that the test
case does not care how any of its actions are executed, simply that they
are. You can see how adding another option for creating a new project
would not require this test case to change, but that this test case would
immediately take advantage of that new option. Not only is the essence
of the test case coming through, but your testing is becoming more
comprehensive as well!

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 51

Data Manager and its Data Providers apply these same principles to data
generation, but they do so somewhat differently. Because each Data
Provider will use different methods for generating the data it provides,
Data Manager must delegate much of the selection process to the
individual Providers. Also, Data Providers do not have the natural home
Execution Behaviors have in the LFM, so Data Manager provides a well-
known location from which test cases and LFM methods can look up Data
Providers. A final difference is that while Composite Execution Behaviors
only ever use a single child at any one time, Data Providers support
generating a sequence of test values as well as creating a single value.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 52

Converting the test case to use Data Providers initially seems to have
made things worse, for the “before” code is much shorter than the
“after” code is. Although the code is now longer it also clarifies the intent
of the test case. For example, it is clearly important that a rectangle is
created and not any other type of shape, but the exact location of that
rectangle is clearly not important. You can modify equivalency classes or
add specific values secure in the knowledge that most test cases will
immediately start using the revised datapoints while those test cases
that require specific values will be unaffected. Just as with Execution
Behaviors, the essence of the test case is coming through and your
testing is becoming more comprehensive.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 54

Composite and Child Execution Behaviors work with Execution Behavior
Manager to extend the reach of your test cases to cover the entire
breadth and depth of your application. Data Manager and Data Providers
allow you to free your test data from the shackles of individual test cases
and move them to a central location where every test case can easily
take advantage of them. Already you are ahead of the game, but both
Execution Behaviors and Data Providers help you move even further by
being composable, customizable, and disabling dynamically.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 56

Recall that a Composite Execution Behavior is simply an LFM method
that delegates its implementation to its set of child Execution Behaviors,
and that every LFM method is automatically a child Execution Behavior.
Thus it follows that every Composite Execution Behavior can also be a
child Execution Behavior – that is, Composite Execution Behaviors can be
composed within other Composite Execution Behaviors. This allows a
complex tree of execution possibilities to be easily built yet still be easy
to understand.

Similarly, because a Data Provider is simply an object that generates one
or more data values, any Data Provider can be used by any other Data
Provider. Thus variation can be injected throughout the entire depth of
the data generation process with ease.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 57

Execution Behaviors help isolate test cases from the details of how
actions are executed; Data Providers remove all knowledge of how data
is generated and the set of possible values. However, an individual test
case may require a specific execution method or data value. Test cases
can customize Execution Behaviors on a simple level by directly
executing a child Execution Behavior, forcing that specific path to be
taken. Test cases can customize Data Providers similarly, by directly
utilizing specific Data Providers or even by hard-coding their test data.
Both approaches can be intermingled within a single test case, allowing
the best strategy to be used at all times.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 58

Further extending the power of Execution Behaviors is their ability to be
dynamically disabled. An individual Execution Behavior may only be
executable when the application is in a specific state, and it obviously
will not have the desired effect if the application is not in that required
state. On the other hand, many Execution Behaviors are always available
for use. Each Execution Behavior can flag its availability as being
dynamic. When the Execution Behavior Manager is asked to choose from
a Composite Execution Behavior’s set of child Execution Behaviors, it
makes its selection only from that subset of children that are available at
that exact moment.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 60

I mentioned earlier that Execution Behaviors and Data Providers support
a simple level of compile-time customizability by allowing individual child
Execution Behaviors and Data Providers to be called directly. This allows
individual test cases to manage their environment, but some choice
selection management must take place at higher scopes. Both Execution
Behaviors and Data Providers support more sophisticated levels of
customization at runtime, where choices can be replayed, choices can be
biased, and guarantees that every choice that can be selected is.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 62

In a world where most test cases delegate choosing execution paths and
generating test data to Execution Behavior Manager and Data Manager,
every time a test case is run it is likely to take a different path using
different data than the last time it was run. This automatic variation
provides breadth of coverage, but it also makes Replayability essential.
Each time a test case is executed, a replay script is generated in which
every choice Execution Behavior Manager and Data Manager make is
recorded. Running this script executes the test case using exactly the
same paths it took and values it used originally. Instant regression tests!

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 63

Earlier I explained how each child Execution Behavior can dynamically
disable itself based on application state. Additionally, each Execution
Behavior can declare metadata about itself, such as whether it uses the
mouse or keyboard. Global weighting factors can then be applied across
an entire test run to skew the Execution Behavior selection process in
specific directions along these axes. Test cases and LFM methods can do
the same on a smaller scale by defining local weighting factors.

Data Providers can be biased as well. Many Data Providers define
equivalency classes for the data they produce; global and local weighting
factors can be used to cause certain equivalency classes to be selected
more or less often than the others.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 64

Even with Execution Behavior Manager and Data Manager directing the
action, over the course of any particular test run it is unlikely that every
possible execution path and data value will be selected. Each subsequent
test run, however, increases the chance that each execution path and
data value – and combinations thereof – will be selected not just once
but many times over. Execution Behavior Manager and Data Manager
ensure full coverage by remembering the choices they make each run
and using that historical data as the basis for their decisions in later
runs. Even the far edges of your application and most esoteric cross-
feature interactions are sure to be well-exercised after months of test
runs.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 67

Here is the test case as it stands at this point. Applying Execution
Behaviors and Data Providers makes obvious where specific execution
methods and data values matter and where they do not. Information
about which execution paths are taken and which data values are used
has been freed from the jail of test cases and released into Execution
Behavior Manager and Data Manager, where every test case can take
advantage of that information. The essence of the test case is becoming
clear.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 69

Although execution usually gets top billing, the verification a test case
performs is arguably more important: it doesn't matter how many hoops
a test case sends the application through if the results are not accurately
and thoroughly verified. Knowledge of what test actions are to be
executed is paramount to effective verification, so execution and
verification each become as tightly coupled to the other as are these
train cars. Hard-coding verification within itself gives the test case
everything it needs to execute, but it also makes reuse of either the
execution steps or the verification nearly impossible.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 70

Regardless of whether verification is done inline to the test case or in
helper methods, verification code becomes tangled up with execution
code throughout the test case. Initial state is gathered and expected
state calculated before each operation; verification of what actually
happened must necessarily take place immediately after each operation.
Separating verification code from execution code – be that to factor
common code out to helpers or just to make a change – is just as
difficult as would be separating one thread out of the hairball of ropes
above.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 71

Ideally test cases would verify every state value after every operation.
Doing so would be akin to attempting to purchase every one of the
widgets above individually: a time-consuming and frustrating task.
Instead, each test case verifies only a small number of properties that it
thinks are important and ignores the rest, just as you would purchase
only those widgets that you think you will need, because the cost of
doing otherwise is too high. Experienced testers, though, know that
those ignored properties are exactly where the most insidious bugs
manifest themselves, just like the widget you don’t buy is always the one
you need.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 72

Imagine for a moment that you could

• get all the benefits of checking every property after every action while
avoiding the tedium of explicitly acting to do so,

• verify everything all the time without requiring every test case be
visited each time an expected result changed, and

• modify the definition of "everything" without having to update every
test case.

If you lived in such a world, you could catch bugs you currently miss. Far
from being an alternate reality, that world can be reached by decoupling
verification from execution.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 74

The change we are looking for here is simple: the removal of all
verification code from the test case. With verification, execution path
decisions, and test data generation moved into your test libraries, and
with action execution, application data retrieval, and UI manipulation
details moved there as well, not much would be left in the test case.
Your tests would finally be reduced to their essence.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 75

Decoupling verification from execution may seem difficult. Extracting the
tangles of verification from your test cases may seem likely to be a
chore. Both can indeed be the case, and without a doubt you have some
work ahead of you. The Beatles got by with a little help from their
friends, and so will you. Three friends in particular will be of use: clearly
defined verification scope, models of what should happen within that
scope, and state to track it all.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 77

Think back to our sample test case as it was at the beginning. One of the
reasons scripted test cases become so complicated and convoluted is
that they do not form boundaries amongst their various actions. Just as
dye quickly makes its way into every nook and cranny when it is added
to a bottle of water, verification code naturally surrounds every bit of
execution code. Verification you need to do here also needs to be done
there, and soon the tangled mess we love to hate appears.

Start to corral this into some sense of order by drawing boundaries
around areas with deterministic behavior. These scoped areas are vital to
Comprehensive Verification because they define regions for which
expected results can be consistently determined.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 78

Scoped areas of code with clearly defined boundaries are the first set of
friends with whom you must acquaint yourself. The next set of friends to
gather are models of what should happen within each of those limits.
Because each Expected State Generator is focused on a very specific part
of your application, they can be small, easily written, easily maintained,
and easily understood. Clearly defining their areas of responsibility
allows each to be isolated from the others, which further simplifies their
creation and maintenance and improves their understandability.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 79

The first set of friends you gathered was clearly defined scopes of
execution. The next set of friends was models of what should occur
within each scope. From the combination of these two groups comes the
last set of friends you need: state models in which to record the
expected results of each action within each scope.

Comprehensive Verification enables you to verify everything all the time,
and this state model is how you define what “everything” is. It can take
on whatever structure you like, but simpler is better.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 81

Heretofore I have purposely not gone into very many details regarding
implementation, for those details are mostly irrelevant to the concepts I
have been presenting. Loosely Coupled Comprehensive Verification is
slightly different in this regard. I promise not to go too deep – so even
you managers can follow along, but understanding the basic mechanisms
underlying Comprehensive Verification is important to understanding the
benefits it brings. As you will see, those mechanisms are
straightforward: events to loosely couple verification with the rest of the
system, continuous baselining of application state, and the obvious
comparing of expected and actual state.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 83

Verification in scripted test cases is typically tightly coupled to each test
case. Loosely Coupled Comprehensive Verification eliminates this
coupling almost completely, reducing it to just two points: the beginning
and end of each scope. Each time a verification scope is entered or
exited, that code sends an event to verification announcing the fact.
These two events are the only point of coupling to the Verification
subsystem – nothing else happens in the test case or LFM as far as
verification is concerned.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 84

When Verification receives an OperationStarting event it initializes an
instance of the state model with the application’s current state. This
constant baselining ensures that the verification models always base
their calculations on the most up-to-date data.

That freshly-built baseline is next passed around to every verification
model, whereupon each model goes to work determining what effect the
in-progress operation should have on the application’s state. These
calculations tend to be short and simple as most actions affect only a
small part of an application. Complicated calculations, in fact, are often
signs that a model’s focus or an operation’s scope needs to be reduced.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 85

Once all verification models have completed their expected state
calculations Verification sits quiescent until the OperationCompleted
event comes in. What happens at this point is probably obvious:
Verification grabs a copy of the current – which is to say, actual –
application state, compares it against the expected state generated
earlier, and logs any differences as failures. The only part of this process
that even approaches a “wrinkle” is that parts of the expected state can
be set to “I don’t know what this should be”, which cases need to be
handled specially.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 87

Scoped areas of execution, expected state generating models, and a
model of application state. Events that loosely couple verification to
execution. Constant baselining of application state. You may be finding it
hard to believe that all this trouble can really be worth the effort. Oh,
but it is! Loosely Coupled Comprehensive Verification isolates your
verifications from the rest of your system, allows your verifications to
start small and grow over time, and eliminates the follow-on failures that
can be the curse of scripted test cases.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 89

Loosely coupling Verification to the rest of the system isolates it off in its
own corner. This separation makes Verification very flexible. The source
of the events it receives is irrelevant, so a test case can call directly into
verification just as easily as the LFM.

Similarly, the details of how each Expected State Generator performs its
calculations have no bearing on the other Expected State Generators nor
on the rest of the system, so these details can be changed at will – and
as we all know, verification details change all the time.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 90

Decoupling verification from execution means the set of properties being
verified can start small and simple. As application code comes online, as
feature teams decide what should happen in particular cases, and as
testers have time to implement the necessary calculations, these details
can expand.

The ability to say "I don't care" what happens to a particular property as
a result of a particular operation helps here as well. This allows decisions
regarding what data to verify to be made early on whereas details
regarding what is expected to happen can be decided over time.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 91

One more benefit of Loosely Coupled Comprehensive Verification is the
near elimination of follow-on failures. These occur when a test case
hardcodes expected results; when a given step has an unexpected effect
every verification of that datapoint fails. Since Comprehensive
Verification always bases its calculations on the current application state,
however, it automatically adapts to this situation and prevents follow-on
failures.

Baselining also takes care of false passes – the evil cousin to follow-on
failures. If a previous incorrect result is unexpectedly remedied by a
subsequent step, Comprehensive Verification will note that something
changed even though no Expected State Generator expected it to. By
contrast, a standard scripted test case would miss this.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 95

If you are writing scripted test cases the same way I used to, you are
spending so much of your time writing and maintaining them that you
have little time left over to actually do some testing. Is this really where
you want to be? Do you want to be an automator? Or do you want to be
a tester?

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 97

When the essence of your test case comes through,

• It says nothing about how its actions are carried out. Running it a
number of times causes the full set of possibilities to be executed.

• It contains no verification and so will not need to change to make the
verification more complete or if the expected results of any of its actions
change.

• It contains no references to any UI and will not need to change
regardless of how drastically the UI changes.

• It will only need to change if the functionality it is testing changes.

• It is very simple.

• It is focused on actions a user might take - it looks quite similar to the
steps in a help topic, in fact.

• Writing it tests the spec.

• It can be written before the code it exercises exists.

• It can just "light up" once the code it exercises does exist.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 98

These models provide a solid framework for your test cases to build
upon. By focusing on user features in the Logical Functional Model,
Application Internals Model, and Physical Object Model you produce a
solid core infrastructure that will survive the ravages of time. Your test
cases can focus on what they are doing rather than how they are doing
it, and they can be understood at a glance. The patterns organizing your
infrastructure are grounded in the stable base of customer features and
so provide a consistent influence even as your application changes. Your
test cases only need to change in reaction to major changes in your
application’s features.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 99

Execution Behavior Manager and Data Manager are the track switches of
your test libraries, directing decisions about which execution paths and
test data values to use when. Moving path decisions to a centralized
location allows you to optimize path and data coverage to cover those
portions of your application you deem most important. As new execution
paths or test data come online and existing ones become obsolete test
cases pick up the changes automatically. Every part of every test case
helps test the entire breadth and depth of your application and so you
can get more testing out of fewer test cases. You can spend less time
automating and more time testing.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 100

Although these houses now form a seamless whole, they were
constructed separately and continue to be modified piece by piece.
Similarly, Loosely Coupled Comprehensive Verification lets you build
execution and verification independently of each other. Implementation
of your Logical Functional Model and Physical Object Model can proceed
apace regardless of how much is unknown about how they will be
verified. Individual Expected State Generators can come online, and
existing ones become more robust, as their details become known. The
elimination of follow-on failures simplifies test case failure analysis. False
passes now can be caught. All of this occurs external to your test cases
and so they become clearer and easier to understand.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 101

These techniques do not just benefit your test cases. They also allow
your feature definition, development, and testing process to be modified
such that:

• Specifications can be tested more thoroughly, helping your feature
definitions be more solid sooner.

• Test cases can be written as soon as (before, even) the specification is
complete, providing a clear statement to your developers as to what the
code they write should do.

• Test cases can be isolated from changes to the UI, giving your project
managers and designers the freedom to explore different ideas through
the development cycle and allowing the UI to be locked down much later
than would otherwise be possible.

• Less time can be spent writing each test case, giving you time to write
larger quantities of test cases as well as more detailed and more
comprehensive test cases.

Your test cases can help your product win the race.

Michael J. Hunter

Microsoft Expression Test Technical Lead

http://www.thebraidytester.com 102

